Multiple Angles
The twice of
angle A, thrice of angle A, fourth of angle A etc. are denoted by 2A, 3A, 4A
etc. are called the multiple angles of the angle A.
9. Prove
the following:
a) (cos 2A - cos 2B)2 +
(sin 2A + sin 2B)2 = 4 sin2 (A + B)
Solution
LHS = (cos 2A - cos 2B)2 + (sin 2A + sin 2B)2
= cos2 2A - 2cos 2A cos 2B + cos2 2B + sin2 2A + 2sin 2A sin 2B + sin2 2B
= cos2 2A + sin2 2A + cos2 2B + sin2 2B - 2cos 2A cos 2B + 2sin 2A sin 2B
= 1 + 1 - 2cos 2A cos 2B + 2sin 2A sin 2B
= 2 - 2cos 2A cos 2B + 2sin 2A sin 2B
= 2 - 2(cos 2A cos 2B - sin 2A sin 2B)
= 2[1 - cos (2A + 2B)]
= 2[1 - cos 2(A + B)]
= 2[1 - {1 - 2sin2(A + B)}] [Q cos 2A = 1 - 2sin2 A]
= 2[1 - 1 + 2sin2(A + B)]
= 2[2sin2(A + B)]
= 4sin2(A + B) = RHS proved
Solution
LHS = (sin 2A - sin 2B)2 + (cos 2A + cos 2B)2
= sin2 2A - 2sin 2A sin 2B + sin2 2B + cos2 2A + 2cos 2A cos 2B + cos2 2B
= sin2 2A + cos2 2A + sin2 2B + cos2 2B - 2sin 2A sin 2B + 2cos 2A cos2B
= 1 + 1 - 2sin 2A sin 2B + 2cos 2A cos2B
= 2 + 2cos 2A cos2B - 2sin 2A sin 2B
= 2 + 2(cos 2A cos2B - sin 2A sin 2B)
= 2[1 + cos (2A + 2B)]
= 2[1 + cos 2(A + B)]
= 2 [ 1 + 2 cos2(A + B) - 1]
= 2 [ 2 cos2(A + B)]
= 4 cos2(A + B) = RHS proved.
10. Prove the following:
a) cos2q + sin2q. cos2a = cos2a + sin2a. cos2q
Soln:
L.H.S. = cos2q + sin2q. cos2a
= 1 – sin2q + sin2q (1 – 2sin2a)
=
1 – sin2q +
sin2q – 2
sin2q.
sin2a
= = 1 – 2sin2q. sin2a
R.H.S. = cos2a + sin2a. cos2q
=
1 – sin2a + sin2a(1 – 2 sin2q)
=
1 – sin2a + sin2a – 2 sin2a
sin2q
= = 1 – 2sin2q. sin2a
L.H.S. = R.H.S. proved.
b) (1 + cos 2q + sin 2q)2 = 4 cos2 q (1 + sin 2q)
LHS = (1 +
cos 2q + sin 2q)2
= {1 + (cos 2q + sin 2q)}2
= 12 + 2.1.(cos 2q + sin 2q) + (cos 2q + sin 2q)2
= 1 + 2(cos 2q + sin 2q) + cos2 2q + 2sin 2q cos 2q + sin2 2q
= 1 + 2 cos 2q + 2 sin 2q + (cos2 2q + sin2 2q) + 2sin 2q cos 2q
= 1 + 2 cos 2q + 2 sin 2q + 1 + 2sin 2q cos 2q
= 2 + 2 cos 2q + 2 sin 2q + 2sin 2q cos 2q
= 2(1 + cos 2q + sin 2q + sin 2q cos 2q)
= 2{1(1 + cos 2q) + sin 2q(1 + cos 2q)}
= 2(1 + cos 2q) (1 + sin 2q)
= 2(1 + 2cos2 q - 1) (1 + sin 2q)
= 2´ 2cos2 q (1 + sin 2q)
= 4cos2 q (1 + sin 2q) = RHS
proved.
c) (2 cos A + 1) (2 cos A - 1) (2 cos 2A - 1) = 1 + 2 cos 4A
LHS
= (2 cos A + 1) (2 cos A - 1) (2 cos 2A - 1)
= [(2 cos A)2 - 12]
(2 cos 2A - 1)
= (4 cos2 A - 1)
(2 cos 2A - 1)
= (4 cos2 A - 2 +
1) (2 cos 2A - 1)
= [2 (2cos2 A - 1)
+ 1)] (2 cos 2A - 1)
= [2 cos 2A + 1)] (2 cos 2A - 1)
= (2 cos 2A)2 - 12
= 4 cos2 2A - 1
= 4 cos2 2A - 2 +
1
= 2(2 cos2 2A - 1)
+ 1
= 2 cos 2.2A + 1
= 2 cos 4A + 1 = RHS proved.
d) 1 + 2 cos 8q
= (2 cos 4q - 1) (2 cos 2q - 1) (2 cos q - 1)(2 cos q + 1)
LHS = (2 cos 4q - 1) (2 cos 2q - 1) (2 cos q - 1)(2 cos q + 1)
=
(2 cos 4q - 1) (2 cos 2q - 1) {(2 cos q}2 - 12}
=
(2 cos 4q - 1) (2 cos 2q - 1) (4 cos2 q - 1)
=
(2 cos 4q - 1) (2 cos 2q - 1) (4 cos2 q - 2 + 1)
=
(2 cos 4q - 1) (2 cos 2q - 1) {2 (2cos2 q - 1) + 1}
=
(2 cos 4q - 1) (2 cos 2q - 1) (2 cos 2q
+ 1)
=
(2 cos 4q - 1) {(2cos 2q)2 - 12}
= (2 cos 4q - 1) (4cos2 2q - 1)
= (2 cos 4q - 1) (4cos2 2q - 2 + 1)
= (2 cos 4q - 1) {2(2cos2 2q - 1) + 1}
= (2 cos 4q - 1) (2cos 2.2q + 1)
= (2 cos 4q - 1) (2cos 4q + 1)
= {(2 cos 4q)2 - 12}
= 4 cos2 4q - 1
= 4 cos2 4q - 2 + 1
= 2 (2cos2 4q - 1) + 1
= 2 cos 2.4q
+ 1
= 2 cos 8q
+ 1 = RHS proved
15. (c) Prove that
Here,
sin5θ = sin(3θ+2θ)
=sin3θ.cos2θ+cos3θ.sin2θ
=(3sinθ − 4sin3θ)(1− 2sin2θ) + (4cos3θ
− 3cosθ) 2sinθ.cosθ
=3sinθ − 6sin3θ −4sin3θ
+ 8sin5θ + 8sinθ.cos4θ − 6sinθ.cos2θ
=3sinθ − 6sin3θ −4sin3θ
+ 8sin5θ + 8sinθ.(cos2θ)2 − 6sinθ.cos2θ
=3sinθ −10sin3θ + 8sin5θ + 8sinθ(1− sin2θ)2 − 6sinθ(1−sin2θ)
=3sinθ −10sin3θ + 8sin5θ + 8sinθ (1−2sin2θ
+ sin4θ) − 6sinθ + 6sin3θ
=3sinθ −10sin3θ + 8sin5θ + 8sinθ − 16sin3θ
+ 8sin5θ − 6sin θ + 6sin3θ
=16sin5θ − 20sin3θ + 5sinθ
12. c)
cos3A cos 3 A + sin3 A sin 3 A = cos3
2 A
Soln: L.H.S. = cos3A cos 3A + sin3A sin 3 A
=
cos3A (4 cos3A – 3 cos A) + sin3A (3 sin A – 4
sin3A)
=
4 cos6A– 3 cos4A+ 3 sin4A – 4sin6A
=
4(cos6A – sin6A) – 3 (cos4A – sin4A)
=
4[(cos2A)3 – (sin2A)3] – 3(cos2A
– sin2A) (cos2A + sin2A)
=
4[(cos2A –sin2A)3+3 cos2A sin2A
(cos2A – sin2A)] – 3(cos2A–sin2A)
=
4[cos32A+ 3cos2A sin2A. cos 2A] – 3 cos 2 A
=
4cos32A + 3 . 4cos2A sin2 A . cos 2A – 3
cos 2A
=
4 cos3 2A + 3(2 cos A sin A)2 . cos 2A – 3 cos 2A
=
4cos3 2A + 3 sin2 2A . cos2A – 3 cos 2A
=
4 cos3 2A + 3(1 – cos2 2A) . cos 2A – 3 cos 2A
=
4 cos2 2A + 3 cos 2A – 3 cos3 2A – 3 cos 2A = cos3
2A
=
R.H.S. Proved.
15. With the help of multiple angles relation of Sine and Cosine, find the
values of sin18°, sin36° and sin54°. By using these values, find the values of
cos18°, cos36° and cos54°. Also, find the value of tan18°, tan36° and tan54°.
Share your result to your friend and prepare combine report.
Soln:
To find the value of sin 18o
Let q
= 18o
or, 5q
= 5 ´ 18o = 90o
or, 3q + 2q = 90o
or, 2q = 90o- 3q
or, sin 2q = sin(90o- 3q)
or, sin 2q = cos 3q
or, 2 sin q cos q = 4 cos3 q - 3 cos q
or, 2 sin q cos q - 4 cos3 q + 3 cos q = 0
or, cos q (2 sin q - 4 cos2 q + 3) = 0
Since cos q ¹ 0, so
2 sin q - 4 cos2 q + 3 = 0
or, 2 sin q - 4 (1 -
sin2 q) + 3 = 0
or, 2 sin q - 4 + 4sin2 q + 3 = 0
or, 4sin2 q + 2 sin q - 1 = 0
Let sin q = x, the above equation
becomes,
4x2 + 2x -
1 = 0
0 Comments